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Lunar Radio Beacon Location by Doppler Measurements

TavYLOR GABBARD* AND R. M. T.. BAKER J R.T
Lockheed-California Company, West Los Angeles, Calif.

A feasibility analysis points up the fact that, although the overall Doppler shift of a signal
originating from a beacon on the moon is quite significant, the portion of the shift which is
sensitive to the selenographic latitude and longitude of the beacon is much smaller. In fact,
the basic transmitter frequency would have to be held constant (including noise) to one part
in 10° for even marginal performance of the beacon location system. The feasibility analysis
also shows, qualitatively, that there exist optimum times of the month for most accurately
determining the selenographic coordinates of a beacon. The detailed formalism for a differ-
ential correction procedure is given in which the first-estimate values of the beacon coordi-
nates are obtained, e.g., from the trajectory ephemeris of the vehicle setting the beacon upon

the moon.

I. Introduction

HE question considered here is that of determining by

analysis of the Doppler shift in frequency, as measured
from a terrestrial observing station, the selenographic co-
ordinates of a radio beacon set upon the moon. It is recog-
nized that the sensitivities required here may be pushing the
present state of the art in Doppler measurement; however,
the analysis is continued under the assumption that the re-
duction of the raw Doppler data will lead-to the more di-
rectly usable range-rate (p) information that the authors
desire,

The analysis presented here is divided into two parts:
first, recognizing the obvious, that p will arise from the rota-
tional motion of the earth and moon about their axes and the
motion of revolution of the moon about the earth, a rough,
rule-of-thumb analysis is carried out to estimate the relative
contributions of these motions to the measured p and to deter-
mine whether certain periods of the month are more favorable
than others for accurately determining the location of the
lunar beacon. A more exact and more detailed analysis is
developed next which in essence is a differential correction
procedure based upon p as the observable quantity. The
first-estimate values for the selenographic coordinates of the
beacon may be obtained, e.g., from knowledge of the tra-
jectory ephemeris of the vehicle planting the beacon on the
moon and the time at which the beacon was placed there.

II First-Order Analysis

It was noted in the Introduction that g arises from the ro-
tational motion of the earth and moon and from the motion
of revolution of the moon about the earth. To obtain a some-
what more detailed knowledge beyond this general state-
ment, first note that

o=R+r4+ R 1)
(The symbols are defined in Fig. 1.) Differentiation of Eq.
(1) leads to
p=R+i+R @
and Egs. (1) and (2) in turn lead to
pp=06={R®R+r+Ri+ .
RRE+RRP+GE+RN-+ RN B
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or

op & {(op)1 + (0p)2} + (05)s @i

where the associations are clear.

The terms in braces in Eq. (3) are recognized as those which
arise from the fact that the terrestrial observing station is not
located at the earth’s center, and the brackets further set
apart those terms dependent upon the lunar coordinates of
the beacon. Next consider, in turn, g, g2, and gs, i.e., the
respective contributions to p from (pp)i, (pf)2, and (pp)s.

Contribution of (pp); to p

It has been noted that (pp): is independent of the seleno-
graphic coordinates of the lunar beacon; hence p; resulting
from it is a masking, superfluous signal that will yield no
knowledge of the beacon’s lunar coordinates. To obtain a
maximum order-of-magnitude value for it, make the simpli-
fying assumptions that the Doppler station is on the equator,
that the earth’s equator and the lunar plane of motion are
coincident, and that p =~ r. By these assumptions,

(b} ~ R-p + R-1 (5)
hence
pr2(oph/p ~ R-(o/p) + R/p)-1 (6)

Closer examination of Eq. (6) reveals that the first term is
maximum positive when the moon is on the western horizon,
i.e., when it is setting, and that the second term is maximum
positive when the moon is on the eastern horizon, i.e., when
it is rising and when the moon is at perigee. Since the two
conditions of moonrise and moonset cannot be met simul-
taneously, the relative magnitudes of the two terms in Eq.
(6) must be examined :

[R-(0/0) lmax =~ 5.9 X 1072 c.u.$ )
and, where p ~ r =~ 60 c.u,,
[(R/p) t]max =~ 2.2 X 1073 c.u. (8)

Combining Eqs. (7) and (8) into Eq. (6),
(P max = 5.7 X 1072 c.u.
=~ 1470 fps 9)

1 The symbol £ is to be read as “is equal by definition to.”

§ The set of units termed ‘‘characteristic units’’ (and here-
after abbreviated simply as c.u.) is based upon the earth’s equa-
torial radius (¢.) as the unit of distance and the “k.~* min”’
(approximately 13.5 min) as the unit of time; k.2 = GM &, where
(in laboratory units) @ is the constant of universal gravitation
and Mg is the mass of the earth. In characteristic units, the
mass of the earth is taken as the mass unit.
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Contribution of (pg): to p

Since the position of the observing station is involved in
(pp)s, the value of p,also will have a principal diurnal variation.
Again, to make .order-of-magnitude estimates of the quanti-
ties involved, the authors make some simplifying assump-
tions. Noting that the lunar equator is not inclined too
greatly to the earth’s equator (approximately 25° at pre-
sent), the geometry is simplified by assuming that the earth’s
equator, the moon’s equator, and the moon’s orbital plane
are coincident and that the observing station and beacon
lie on the equators of the earth and moon, respectively.

Under the simplifying assumptions given, R-3 will be a
maximum when the moon is in the observer’s meridian and
the beacon is on the west limb of the moon, i.e., at large

positive longitude. Similarly, R-% will be a maximum when
the observer sees the moon setting and when the beacon is
in the center of the lunar disk. Again one finds conditions
that cannot be met simultaneously; to determine the prin-
cipal effect, a comparison of the relative magnitudes of the
two quantities concernedmust be made next; hence

[R: (9/0)]mex ~ 2.5 X 107 cu. (10)
and
[(R/p) Rmex ~ 8.8 X 1078 c.u. (11)

where it is taken that p = r =~ 60 c.u. and R = 3 c.u. Since
the latter is approximately two orders of magnitude down
from the former, :

pz = (90)2/p 12)
has a maximum daily variation of
(p)max = 2.5 X 10~* c.u.
7.0 fps (13)

1t is evident that p, would diminish if either the beacon or
the observing station were situated at higher latitudes.
Thus, using the criterion that the selenographic coordinates
of the beacon will be determined more accurately for those
positions yielding the greatest contribution to the measured
p, it is seen that the component gy would be expected to yield
more accurate data for longitudes near the limb and for
low latitudes.

L

Contribution of (pp); to g

Tt is recognized that (pg)s is exactly identical to pp for the
hypothetical assumption in which the observing Doppler
station is located at the earth’s center. Imagining this
assumption fulfilled, one sees from Fig. 1 that by the law of
cosines

ot = 7t N2 — 2N cosd (14)
where
cosd = sinb sinB + cosb cosB cos(A — ) (13)

The selenographic latitude-longitude of the beacon and
sub-earth point, respectively, are (A, 8) and ([, b); N and 8
are, in part, the quantities that one wishes to determine from
the Doppler observations, and ! and b are quantities that
may be computed for any instant of time. (They also are
tabulated in the American Ephemeris and Nautical Almanac
at one-day intervals.) Differentiating Hq. (14), one finds
that

(pp)s =~ r# — 7I[sind sinB + cosb cosf cos(A — )] —
rR[b cosb sinB — b sinb cosf cos(A — I) +
[ cosb cosB sin(n — )] (16)

Since [ and b lie in the general range

—-8° < b < -+ 8° (17)
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one makes the further assumption that they are zero and ob-
tains

(0p)s ~ 17 — rRb sinf — }
7R cosB cosh — rRl cosB sinh  (18)
With a little thought, it is seen that both I and b have their
maximum values in the vicinity of the ecliptic nodal passages
of the moon. More exactly, I, & < 0 (both ~ —225 X
10~* c.u.) at the ascending node, and I, b > 0 (both =~
2.50 X 10~* c.u.) at the descending node.
Looking at the individual components of Eq. (18), it is

first recognized that the (r #) term contributes no knowledge
of A and 8. The maximum magnitude of its contribution to

ps = (pp)s/p (19)
ist
(Tf/P>max = Pmex = (,U-/Z?) 12 ¢ (20)

and at a true anomaly v = 90°.
Taking the semilatus rectum p ~ 60 c.u. and ¢ =~ 0.05
for the lunar orbit, there results

Fmax =~ 6.4 X 1073 c.u.
= 170 fps (21)

Under the continued assumption that p =~ r =~ 60 c.u. and
N = 1 c.u., the coefficients of sinB, cosB cos\, and cosB sin\
have the representative values of

(P RE/ ) max = 5.9 X 107 cou. =~ 1.5 fps (22)
(PR p)max = 2.7 X 1075 c.u. = 0.7 fps (23)
(PRI P)max ~ 5.9 X 1075 cou. ~ 1.5 fps (24)

Again using the criterion that those locations will be deter-
mined most accurately which produce the greatest contribu-
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Fig. 1 Earth-moon geometry

! Baker, R. M. L., Jr. and Makemson, M. W., An Introduction
to Astrodynamics (Academic Press Inc., New York 1960), pp.
115, 66—67.
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tion to the measured p, one may conclude that the libration-
induced p will permit high accuracy in latitude 8 only at the
sacrifice of accuracy in longitude A, and vice versa. Ex-
amination of Eq. (18) shows that both 8 and A may best be
determined when the moon is at the ecliptic nodal passage,
and that A may be determined better still when this instant
corresponds to a true anomaly v = 90°.

Thus, one has seen in this rough analysis that there are two
prinecipal sources of contribution to the measured p, part of
which lead to knowledge of the selenographic coordinates of
the moon beacon. They are as follows:

1) The rotation of the earth (the effect of the moon’s
rotation is of second order yet to this).

2) The motion of revolution of the moon about the earth
through a) the varying # component, due to the nonzero
eccentricity of the lunar orbit, and b) the lunar librations,
due mainly to the nonzero eccentricity of the lunar orbit and
the inclination of the lunar equator to the lunar orbit plane.

Based on what has gone before, the following conclusions
can be drawn:

1) The influence of beacon location on the moon changes -

the Doppler shift pattern only a few feet per second, at most.
(This location-dependent shift is approximately three orders
of magnitude down from the total expected Doppler signal.)
In order to sense this few feet per second, the frequency of
both the terrestrial transmitter and the beacon transponder
must have a fidelity of one part in 10°.}

2) The definition of beacon longitude will generally be

somewhat better than the determination of beacon latitude.
3) Beacon latitude can be better determined when the
moon is a) on the observing station’s horizon, and b) at the
ecliptic nodal passages.
4) Beacon longitude can be better determined when the
moon is a) on the observing station’s horizon, b) at the
ecliptic nodal passage, and ¢) at a true anomaly of 90°.

II1. Detailed Analysis

In the Introduction, it was stated that the approach here
would be one of a differential correction procedure based
upon p as the observable quantity. This procedure is one
of a number of statistical methods that might be used to sepa-
rate the very small Doppler shift frequency due to lunar
station location from the noise. To explain this more fully,
first define Xy’, ¥/, and Z," as the first-guess estimate of
the selenographic coordinates of the lunar beacon. Based
upon these, one then may obtain (by formulas to be de-
veloped later) computed values of g and g (i.e., of g. and p.) for
any instant of time; g. and g. then combine to obtain the
computed p,:

pc = (Pnpc/Pc) = [(Qc'éc)/(gc’90>1/2] (25)
Using a linearized Taylor’s expansion, one next has

(po — po) £Ap = (0p/0X")AX" +
Qp/DYYAY' + (Dp/OZNAZ' (26)

where gy is the observed value of p corresponding to the same
instant of time for which g, was obtained. The partial deriva-
tive coefficients to AX’, AY’, and AZ’ are obtained from the
same formulas used in obtaining ..

Thus, with a minimum of three “observed-minus-com-
puted’’ residuals [i.e., three of Eq. (26)], one may solve-for
corrections to the first-guess values of the selenographic
coordinates and obtain the improved values

XQI = X1’ + AX’

Yy =Y, 4+ AY’ (27)
Z2/ = le + AZI

Il That is, for the signals leading to knowledge of the beacon
location, Av/» = v/c = 0.7 fps/0.98 X 109 fps = 109,
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Tterating on the procedure, the values given by Eqs. (27)
could be used again in Eqgs. (25) and (26) to get further im-
proved values of the beacon coordinates.

Proposed herein has been a description of the basic method
of differential correction; however, for the immediate prob-
lem, it is felt best to “subtract-out” of po that computed por-
tion of p which does not depend upon the lunar beacon loca-
tion and to use for g. just those portions of p which do depend
upon the lunar location of the beacon. Necessarily, the
coefficients in Eq. (26) must be based upon only the latter,
i.e., upon the portion of g dependent upon beacon location.
To see more clearly the point to be made, rewrite ¥q. (3)
in the manner

pepe = [(Re + 1) (Re + 1) ]+
R + Re- R+ 1] (28)
Now, replace po and p. in Eq. (26) by
po’ = po — (1/p) [(R. + £)- (R, + 1)] (29)
b’ = (1/p) [Respe + Re- R + £0)] (30)
and take Eq. (26) replaced by

(B’ — p.") = (0p'/OX")AX' +
(0p'/2Y") AY' + (0p'/0Z") AZ' (26a)

It

where the partial differential coefficients now are obtained
from

pr= (/) Re +R-R+1D] (30a)

Turning now to the development of more explicit expressions,
first define the frame of reference as the true (celestial) equa-
tor and equinox of date. Defining unit vectors in this frame
as I, J, and K (see Fig. 1), one may write (see footnote 1,
pp. 66-67) '

R = —(C+ H) cose¢cost 1
— (C 4+ H) cose sing J 31)
— (8+ H) sinpg K

and

R = wy(C 4+ H) cosesingI —
wg(C 4+ H) cosg cosf J (32)

where (see Fig. 1) ¢ is the geodetic latitude of the Doppler
observing station, 8 is the local true sidereal time at the sta-
tion, and wgy =~ @ is the scalar angular rate of rotation of the
earth; H is the height of the observing station above the
reference spheroid, and C and S are functions of ¢ and the
flattening f of the reference spheroid.

For the geocentric position r and veloeity T of the moon,
one simply writes

r=ua2l+yJ] + K (33)
and, to a sufficient approximation,
# =4l + yJ + K (34)

For the position It and velocity %R of the beacon in the
true (celestial) equator and equinox of date frame, which has
been translated to be selenocentered, one writes

RN =XI4+7Y]+ZK (35)
and

R = XTI+ V] + ZK (36)
where the selenocentric components of position (X,Y,Z) and

of velocity (X,Y,Z) are related to the selenographic com-
ponents of position (X’,Y”’,Z’) by the matrix equations
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X X’
V |=ay| V7 87
7z L 7"
and
_ X -yt
YV | =ay| V' (38)
L Z L Z" ]

In other words, the matrix a;; transforms position com-
ponents from the true selenographic frame (defined by
Cassini’s laws for the mean rotation oi the moon and ex-
pressions given by Hayn for the physical librations) into the
selenocentric, true (celestial) equator and equinox of date
frame. The term d;; is derived in a relatively simple manner
from the d.;, and Eq. (38) contains the assumption that the
beacon 1s at rest with respect to lunar features. The terms
a;; and d;; may be computed for any instant of time. Next,
combining Eqs. (31, 33, 35, and 37) in the manner prescribed
by Eq. (1), there results

o = [—(C 4+ H) cosp cost + = +
(auX' + anY’ + 013ZI>] 1+
[—(C + H) cosg sinf + y +
(@nX’ 4 aY’ + anZ’)] J
[—(S + H) sing 4 2 +
(@ X' + azY’ + anZ’)] K (39)

or, where the associations are clear,

e A’l1I + A42J ‘I— ;ng (39&)

Similarly,
R4r=[—(C+ H) cosg cosbf + z]I +

[—(C 4+ H) cospsind + y] J +
[—(8 + H)sing + 2] K (40)

0p" _ (Ci + E))(0D,/0X") + (€2 + E2)(0Dy/0X') + (C5 + E5)(0D;/0X")
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or
R+1t2 01+ CJ+CK (41a)

Introducing the further simplifying notation of

R = DI+ D.J+ DK (42)
and
N = EI + B.J + BK (43)
where
D1 S dqu + dwY/ + a13Z,
Dy & anX' + anY' + anZ’ (44)
D; & au X' + anY’ + apZ’
and
E £ anX' 4+ anY’ + anZ’
By & X' + anY’ + dnZ’ (45)
2

)

dSIXI + d32Y’ + d33Z,
one may write [see Kq. (29)]
BlCI + BQCZ + B3C3

ﬁo = ﬁo - (:/112 + Azz + 5132‘)1/2 (46)
and [see Eq. (30)]
o (AEy + AyEy + AsEs) +(CDy + CoDs + C3Dy) (47)

pe (A + A2 + A7
For some measure of simplicity in computation, note that
A, = B;+ D 1=1,2,3 (48)

and
04:/0X’ = 0D;/oX’ X' —Y' 7" (49)

One may further obtain from Egs. (47) and (49)

+

oxX’ (A2 + A2 + L7

A(0E,/0X") + A;(QB;/0X") + A5(0E;/0X")  (ME: + A.E; + AEy)[A4,(0D,/0X") + A:(0D,/0X") + A5(0Ds/0X")]

(A + A + A7

(CiDy + C3D: + C3D5) [41(0D1/0X") + A2(QDo/0X") + A5(0D;/0X7)]

[(42 + A2 + A?)BHe

X'— Y, 7 (50)

or, again where the associations are clear,
R+r# BI+ BJ+ BK (40a)
Also,

R 4+ = [we(C + H) cose sing + 2]I +
[—we(C + H) cose cos + y]J + 2K (41)

[(A7 + 47 + A7

The partial derivatives 0D,/0X’ and 0E;/0X’ are ob-
tained from Eqs. (44) and (45), where it is seen, e.g., that 0Dy/
X' = 1.

In conclusion, one sees that, in principle, if one is given the
first-estimate values of the selenographic coordinates (X',
Y’ Z") of a beacon, a differential correction procedure may
be carried out according to the formulas herein developed.



